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Martensitic phase transitions with surface effects

MARK LUSK
Division of Engineering and Applied Science, California Institute of Technology. Pasadena, CA

91125, USA

Abstract. A model of martensitic phase transitions is presented that is capable of accounting

for a variety of surface effects associated with the localized interaction of coexisting phases of

a material. Such phenomena are thought to play a critical role in determining the size, shape

and stability of nucleated embryos as well as to affect the conditions under which nuclear;on

occurs. Attention is restricted to transitions that are mechanically induced, and the model

does not account for temperature effects. Materials that undergo martensitic phase changes

are modeled as hyperelastic in both the bulk and the interface. The characterization of such

bodies is examined in detail, and a representation theorem is presented for isotropic, hyperelastic

interfaces in terms of two scalar invariants associated with the deformation of the interface.

1. Introduction

A subject of continuing interest in both the mechanics and materials science

communities is non-diffusive phase transitions that involve two solid phases of a

material separated by a sharp, coherent interface. These martensitic processes

are most common in Fe-C systems, but are found in Ni-Ti, Ag-Cd, Au-Cd, Cu-

Zn, Cu-Zn-Al, Cu-Al-Ni, In-T1 and other alloys as well [1-7]. In addition, some

ceramic materials such as partially stabilized zirconia exhibit this type of phase

transition [8-10].

In recent years the materials science community has developed a wide vari-

oty of products whose working properties rely on martensitic phase transitions.

'I uese include shape-memory materials like the Nitinol and Tinel alloys [11]. An-

other technology based on martensitic phase transitions is that of transformation-

toughened materials [8-10].

Interest in martensitic materials has motivated a variety of theoretical in-

vwstigations that help to better understand these phase transitions by modeling

them from a continuum physics perspective [12-341. Here phases refer to disjoint

domains of a single energy functional that characterizes the material of interest.
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This is in line with the intuitive picture that individual phases are just differing

configurations of a single substance and provides a means of distinguishing the

deformation of a given phase from a phase transition. The classical exanple of

this type of material description is that for the Van der Waals fluid [35]. From

the continuum point of view, an interface is coherent if the inultiphase configura-

tion can be described as a continuous deformation of some homogeneous reference

state.

Material constitution generally imposes severe restrictions--phase segrega-

tion rcquirements--on the ways coherent coexistence can be accommodated. Mul-

tiphase states can be supported only under certain conditions, and the shape of

each phase is often restricted as well [34]. The interface between phases may

accrete--that is, move relative to the underlying material so as to effect a trans-

fer of mass from one phase to another. However, it is not a free boundary because

of the phase segregation requirements, and certain materials may call for supple-

mentary information regarding interface position [21-23, 26, 29, 30].

Some continuum models do not capture certain key phenomena, known as

surface effects, associated with phase transitions. These are due to the localized

interaction of coexisting material phases. This interaction is particularly relevant

in situations where the interface curvature is very large-as in the initial formation

of a new phase embryo [41].

One such surface effect is the existence of a jump in the traction exerted

on either side of an interface within a statics setting. In fluids, for example, the

pressure inside a vapor bubble is higher than that of the surrounding liquid, but

in solids it is reasonable to think that interfaces may resist shear as well, since

this is a characteristic of the bulk phases on either side of the interface.

A second important effect attributable to interface properties is the occur- 7V

rence of supercritical phenomena [36-40]. Conditions capable of initiating a phase [3

change with planar interface geometry cannot produce a phase embryo with a

highly curved boundary. For example, a phase change might not occur until -

l 4 cod**-.

Dist special.
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the body is superheated above its normal transition temperature. Likewise, for

mechanically induced reactions, a body may require straining beyond the level

known to induce phase changes when inhomogeneities allow the formation of low

curvature interfaces.

The symmetry properties associated with an interface influence the shape of

a phase embryo, and this is especially true when the nucleus is so small that bulk

effects do not dominate [41, 421. The surface properties of an interface can thus

play an important role in the determination of embryo shape.

A final surface effect pertains to the stability of newly formed nuclei which

may depend upon the embryo size as well as on conditions at the system bound-

ary. This behavior, and often the existence of such equilibria themselves, are

attributable to localized properties at phase interfaces [38-40].

Continuum treatments of phase transitions may be modified to account for

these important surface effects. Interface properties are modeled by fields defined

on the interface itself, which are collectively referred to as interfacial structure.

Here the interface is usually treated as a surface. Balance principles are postulated

that restrict the way in which bulk and surface fields may interact, and materials

are characterized by constitutive response functions. An historical survey of the

evolution of such models is provided by LUSK [45].

For simplicity, attention is restricted to martensitic transitions that are me-

chanically induced, and the development presented here does not account for tem-

perature effects. The theory is a modified version of that developed by GURT•N

and STRUTHERS [46], and offers an alternate foundation for studying surface ef-

fects in martensitic phase transitions. Materials that undergo such changes are

modeled as hyperelastic in both the bulk and the interface. The characterization

of such bodies is examined in detail, and a representation theorem is presented

for describing the interfaces of isotropic, hyperelastic bodies in terms of two fun-

damental scalar invariants associated with the deformation of the interface. An

application of the theory is discussed in LusK [471.
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2. Preliminaries

Within a purely mechanical theory of phase transitions, phase interfaces are asso-

ciated with strain discontinuities. For clarity of presentation, the theory presented

here assumes there exists at most one such interface in a given body.

2.1 Notation and definitions

ff? N set of all N-tuples of real numbers

v N, uN N-dimensional inner product spaces

E'N N-diniensional Euclidean space

Unit(VN) set of all unit length elements of V'N

Lin(VNv, VM) set of all linear maps of V'-,VM

LinUS (V N, V"M) set of all non-singular elements of Lin( VN, VM)

Lin+(V"N,UN) set of all elements of Lin(VN,UN) with positive determinant

Sym(V N) set of all symmetric elements of Lin(v, VN y)

Sym+(VN) set of all positive definite elements of Sym(VN)

Unim(VN,UN) set of all elements of Lin+(VN,UN) with unit determinant

Orth( VN,UN) set of all orthogonal elements of Lin( VNuN)

Orth+(VN,UN) set of all orthogonal elements of Lin+( VN,U1\')

The inner product of a, b E VN is denoted by <a, b> or -A b. The outer

product of c E VN and d E V M is denoted by c ® d E Lin(VV,VA"). The

vector product of f,g E VN is denoted by (f A g) E V'N. The inner product on

Lin(VtN, V M) is defined by

A.B:=Trace(AB T)=(A,B) VA,BELin(VN,.VA) (2.1)

so that all of the sets of linear transformations defined above are endowed with

an inner product space structure.

In general, scalar fields are denoted by lower-case letters, vector fields by

lower-case bold type, and tensor fields by bold-type, upper-case letters. A super-
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script '.' denotes partial differentiation with respect to the second argument of a

function.

Surface S a subset of E 3 locally diffeomorphic to E2 .

Surface normal n(x) either of the two unit vectors perpendicular

to a surface at the point x.

Tangent space nI(x) of S at x best linear approximation to S at x.

Surface boundary &S the closed curve that delineates the edge of

a surface.

Tangential vector field field on S with values in ni"(x).

Tangential tensor field field on S with values in Lin(n-'(x), nz(x)).

Boundary bi-normal, m(x) the outward pointing unit vector perpendic-

ular to aS at x but within the tangent

space of S at that point.

Projection map P of S tensor field on S with values in Lin(E 3 . n'(x))

defined by P(x)a = a - (a -n(x))n(x)

Vx E S, Va E E 3 .

Inclusion map I of S tensor field on S with values in Lin(nA(x), E3 )

defined by I(x)a = a Vx E S, Va E n'(x).

P(x)I(x) = I1, the tangent space identity

map at x, while I(x)P(x) = 1 - n(x) (3 n(x).

Also, I = P.

2.2 Bulk and surface gradients

Let g : E"ý -+ EN. Then for every x in El° the gradient of g at x, denoted by

Vg(x), is the unique element of Lin(E 1 ¾, EN) such that

lim ((x + hk) - (Vg(x))hk) =g(x) Vk E Ehý. (2.2)

Now consider a scalar field g defined on S instead of E". Let 0 parameterize

S-that is 0 : E 2 - S diffeomorphically. Then there exists f : E'2 --+ R given by
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the composition f := go. which allows the gradient of g to be defined as

Vg(x) := (Vf)o(•¢) (2.3)

It is straightforward to show that this definition of the gradient of a scalar field

is independent of the parameterization o of S. The idea is extendable to vector

and tensor fields on S as well. For emphasis, denote by V, the surface gradient

of a field on S. Note that if w, b. and A are scalar, vector, and tensor fields on

S, respectively, then

V, uw(x) E n' (x)

V b(x) E Lin(n'(x), E 3) (2.4)

7., A(x) E Lin(n'(x), Lin(!E3, E73)).

2.3 Smooth fields and surface divergence -

Let o., : S--+ffT? be a map such that VTw is defined on S. Then w is smooth on S

and is this is denoted by w E C'(S) or sometimes by w : S -- E . The extension

to vector and tensor fields is completely analogous. If b is a smooth, vector field

on S then V, -ý := Trace(PVs i;) on S is the surface divergence of b. Analogously,

for C a smooth, tensor field on S the surface divergence of C is given by

(% ý.C).k= S C k) Vk E (2.5)

The tangential tensor field L := -PV, n provides curvature information in-

trinsic to the surface and is therefore called the curvature tensor. It can be shown

that L is symmetric and that the scalar field H := !Trace(L) gives the surface

mean curvature. A corollary to the Stokes theorem that is useful for surface

considerations is the

SURFACE DIVERGENCE THEOREM.

Let f be a smooth, vector field on S. Then

J . f dA = f -. rndL - I 2H(f . n)dA. (2.6)

S as s



-7-

2.4 Surface motion

Consider a one-parameter family of surfaces S(t) defined over some open time

interval T. Let
S, :={(x,t)Ix E S(t), t E T)}

(0S) 7 :={(x,t)x EaS(t), tE T}

define the surface and surface-boundary trajectories. Let 0 : U C E 2 x TS, be

a one-parameter family of surface parameterizations. Denote by (Pa the restriction

of 0 to OU x T, where OU is the boundary of U. If there exists a 0 such that 0

is defined on U x T and 4a is defined on WU x T, then the surface is said to be

smoothly propagating. It can be shown that while the interface and edge velocities

V (x, t):=5 (0-' (x, t), t)

(2.8)

depend on the choice of parameterization 0 the normal and intrinsic edge speeds,

V, :=V .n on S,
(2.9)

VM:=V m on W57,

are independent of parameterization. V,,n is the normal velocity of S. Vmm is

the intrinsic, tangential edge velocity of S. On the surface boundary, the sum of

these two velocity fields is referred to as the intrinsic edge velocity of S.

Consider a normal trajectory of S, through x E S(to), to E T. This is a

smooth, t-parameterized curve in E' described by a set of position vectors z such

that

z(t) E S(t), P(z(t))i(t) = 0, Vt E T. (2.10)

The normal trajectory is used to define a time derivative following S by

dt

where z gives the normal trajectory of S, through x E S(t). It may be shown

that
A•= - Ts V1. (2.12)
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This derivative also finds application in the

SURFACE TRANSPORT THEOREM.

Let g be a smooth scalar field on a smoothly propagating surface S. Then

-' I 9 dA= [g-2HgV.]dA+ J gV.dL VtET. (2.13)

S(t) S(t) as(t)

2.5 Latticed bodies and interfaces

A collection B of elements p is a body if there is a set f2(8) of continuous bijections

AX such that:

(i) the gradient of the induced map between any two elements has positive

determinant where it is defined;

(ii) Q(8) contains all continuous bijections of its elements.

A lattice L(B) of a body 8 is a set of elements of Q(8) such that:

(i) the gradient of the induced map between any two elements is smooth;

(ii) L(S) contains all smooth bijections (diffeomorphisms) of its elements.

A latticed body is any body together with one of its lattices. The view is

taken that a body must be provided with a lattice-a preferred group of reference

configurations-in order to identify phase interfaces kinematically.

A two-phase deformation with respect to IC E Q(B) is a configuration X E Q(B)

such that the induced map between C and X is arbitrarily smooth everywhere

except possibly on a phase interface S. A two-phase motion X, is a one-parameter

family of two-phase deformations X(t) E S(B) with t ranging over an open interval

T. It is admissible if there exists a reference configuration kA E Q(B) such that

(i) each element of XT is a two-phase deformation with respect to 1c;

(ii) S, is a smoothly propagating surface.

For a latticed body to undergo an admissible, two-phase deformation it must be

admissible with respect to one, and hence all, of the elements of its lattice.
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Consider the two-phase deformation shown in Fig. 1 with induced map y

and bulk deformation gradient F := Vy defined where y is smooth. Then the

surface in the deformed configuration of the body,

S := {YJY = Y(x), x E S}, (2.14)

is referred to as the deformed interface with {Ii, rh} and P its surface orientations

and projection map. The restriction of Y to S, denoted by ý, is the invertible

deformation map of the surface with an associated surface deformation gradient

F • defined on S. Note that F(x) E Lmn+(n1(x),i'(y)), y = ý(x),

even though F is not defined on S. It is often convenient to use the linear

transformation representing the surface gradient of y:

F:= V, Y = F+I = F- 1, (2.15)

where

F- =limi[F(x+In(x))J VxES. (2.16)

Thus,

F=PF, F+ =FP+(F+)n®n, (2.17)

and it is easy to show that

F=IF. (2.18)

Note that F E LinNS(nn, E 3 ).

The orientations of the undeformed and deformed interfaces may be related

using the determinants of the deformation gradients

J :=Det(F)

j :=Det(F) Det(F) (2.19)

ýF- TnJi

where F may be either F+ or F- in the second equality. The relations are

J F-T r j--r

7 =F m, (2.20)
h
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where F may be either F+ or F- and where h is the determinant of the gradient

of the restriction of $' to aS.

Define the material and spatial velocity fields, v and V respectively, as

v(x' t) yx t
(2.21)

If V is a surface velocity of S., then the induced interface velocity

(F +)V +v - (2.22)

is a surface velocity for 8,-the interface trajectory associated with deforming

interface S. As (2.22) indicates, the definition of V does not depend on the side

o! S used and in fact

V=F V+v, VcE [0,1] (2.23)

where
F, :=cF+ + (1 - c)F-

(2.24)
vC :=cv÷ + (1 - c)v-.

Let )CI and AC2 be lattice elements related by the linear transformation G

CI1(6) -+k 2 (B). If V 1 is an interface velocity for the motion with respect to r 1 ,

then V 2 = GV 1 is an interface velocity for the motion with respect to kC2 with

V 1 and V 2 inducing the same interface trajectory S,.

2.6 Galilean objectivity

Consider the admissible, two-phase motions X7 and X'; of a latticed body {IC}

with

X*(t) = QX(t) + dt + e Vt E T,

and

Q E Orth+(1E3 ,E 3 ), d,e E E 3 .
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Denote by 1Z(t) := X(t; /) the region occupied by B for all t in T, with S, the

deformed interface trajectory partitioning 1Z(t) over T. Define the bulk trajectory

as

P. :{(y0I)ly E (t), t E T}.

Suppose that

A (JZ, \ S-) -* Lin(1E 3 , E 3 )

A (y,t) E ST- A-A(y,t) E Lin(fiL(yt),E 3 )

are fields associated with { 3, t } during motion X,4 and that

A*: (; S;) -- Lin(E3,E3)

.•:(y, t) E S,* • (y, t) E Lin (fJ' (y, t), E3)

are the analogous fields of {/, C} during motion ,-;. The fields associated with

{B, £} are said to exhibit Galilean objectivity if

0* (z*(y, t), t) = O(y,t)

A*(z*(y,t),t) = QA(y,t)Q T  V(Yt) E IZT \S

and
•" (z*(y, t), t) = •(y, t)

where A.h*(z*(y~t),t) = QA(y,t)QT r ~ )ES
where

z*(y, t) := Qy + dt + e V(y, t) E TZ,.
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3. Balance postulates

3. 1 Primitive fields

Consider a latticed body {13, f} and an admissible two-phaise motion X, and

let R, and S, be the bulk and interface trajectories discussed in section 2.6.

Stipulate that for every such motion the following smooth fields exist:

Bulk mass density ji : (Rr \ Sr)--.ff?+

Bulk energy density 1' : (Rr \ S)--T)ff?

Cauchy stress T (Itr \ S,)-.Lin( , 3 )

Interfacial energy density li, : r-"!.

Deformational sirface stress T : (t',t) E0Sr - T(yt) E Lir,(n-(y, t)VE 3 )

IAccretive surface stress C: (y,t) E,5", T(y.t) E Lin(•i'(y.tE 3 )

3.2 Balance postulates

Let P', be the bulk trajectory associated with an arbitrary subbody of 5t under

the previous motion X. as shown in Fig. 2. Denote by Q, the partitioning

subinterface trajectory associated with P,. The boundary of Q is denoted by

OQ. Let • be the outward unit normal to OP-the boundary of P. Interface

normal h and bi-normal ri are as defined in section 2. The folloing postulates

are imposed on all such subregions and motions. The theory presented here is a

modified version of that developed by GURTIN and STRU-I HERS ['6].

MASS CONSERVATION

- J P(d1 = o
"Wt)
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MOMENTa, BALANCES

d f-; [' TF A+ 'iiT- I fwU ]TdA rd
P(T I(t) OaQt t)

d-I y A dI"= y A TidA+ + y A tt zdL

P( t) 0'P( ) a )( t)

MIECHANICAL DISSIPATION IMBALANCE

4 +1,, < P,

where

E(t; P(t)) f AJV+ J tddA

P(t) L(i)

K (t; P(0 () p ivAP (t; -P-(t)) := Vd +v vd d Cn V)d

a( t) ao(t) 8Q(t)

+ J 6h.(V-V-)dL.
OQ(t)

PARAMETERIZATION INVARIANCE

The power P expended at the boundary of P is independent of the

parameterization of Q for all times in T.

OBJECTIVITY

IV, tD, T, Tr, and C exhibit Galilean objectivity as defined in section 2.

By Cauchy's theorem, the momenta balances imply that T is symmetric. A

curvilinear triangle version of the theorem applied on the interface shows that the

deformational surface stress 'T is symmetric as well, and is therefore representable
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as a tangential tensor field as defined in section 2.1. Henceforth T is taken to be

tangential. Note that symmetry of T and T together with conservation of linear

momentum implies the angular momentum balance.

The presence of two distinct interfacial stresses taxes physical intuition, and

this issue is addressed at several points in the ensuing development. The defor-

mational stress 'i' expends power in association with the absolute movement of

the interface. Even during a two-phase motion for which no new material changes

phase, work is performed by this stress. In contrast, the accretive stress C ex-

pends power in association with the relative motion of the interface with respect

to the underlying material-a process referred to as accretion. In the limiting

case, not covered by this theory, of a phase transition occurring with no material

deformation the accretive stress may still expend power. This stress is the Eule-

rian counterpart to that presented by GURTIN and STRUTHERS [46] and is related

to the capillary tractions of LEO and SEKERKA [48], CAHN and HOFFMAN [49] and

HOFFMAN and CAHN [50]. Its physical significance for hyperelastic materials is

elucidated in sections 4 and 5.

3.3 Referential formulation

The derivation of local field equations is facilitated by re-expressing all primitive

fields as quantities defined on an arbitrary element of the body lattice, as shown

in Fig. 2. To this end, define the following fields on such a reference configuration:

Referential mass density p :=JP

Referential bulk energy W:=JiV

Piola-Kirchhoff stress S :=JTF-T

Referential interfacial energy w :=jw

Referential deformational surface Stress S :=j••,-T, j = PST

Referential accretive surface stress C :=2j((Fr)) F1T,
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where F, F, j, and J are as defined in section 2.5 and

((Olim) hn(x))+ (x - hn(x)) } Vx E S. (3.1)

Using these fields, the linear momentum balance and the mechanical dissi-

pation imbalance can be expressed as

d pvdV= SvdA + Srn dL (3.2)

"P aT OQQ(U)

and

d WdV + d wdA + d pv.vdV
0 0 Q(3.3)

<JSv -vdA+ f §m [FFV+v,]dL+ f Cm.VdL.
0P 8Q( t) OQ( t)

with F, and vy defined by (2.24).

The respective localizations of the linear momentum balance away from and

local to the interface are

V-S =pv
(3.4)

Ipv]V, + [Sn= - V -S.

Here

[O(x)]:=lim{¢(x+hn(x))- (x-hn(x))} Vx E S. (3.5)

Analogous localizations for the dissipation imbalance are made after considering

the field restrictions imposed by the principle of parameterization invariance.

3.4 Implications of parameterization invariance

Use of the surface divergence theorem gives

J Cm.VdL= J V,. (&m Vm.,m)dA, (3.6)

oQ(1) •Q(t)
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and application of the product rule then yields

J VdL = JCIn.n+(V.C) /] dA + J mrnmV,, dL.

aQ(t) 0(t0 a ,U)

(3.7)

Now consider the second term in the referential dissipation inequality,

J Smn- [FCV + v,] dL. (3.S)

aQ(fl

By the surface divergence theorem this is equal to

J •.* [S[FýnvTdA+ V + J [FcmVm]dL

Q(t) Q(t) OQ(t)

=n J S (Fmn)V,,,dL - J[(F§) -L + (V,)(F, n) ] V dA (9
oQ(t) Q(t)

+ J, {(_4 (STF1n)-no+ (V, v, dA.
QI(t)

The mechanical dissipation imbalance is now expressible in a form amenable to

application of the

INVARIANCE LEMMA. Let

f: S&2 -- JR
f: S'r -'R•

g: ST-IR,

and suppose that

JedV + f fdA+ J gVmdL<O VPcIlZ, VtET.
S QMt) o9(t)

Then g = 0 on S,.

This is proved in [46]. The result restricts the primitive fields by the parameteri-

zation invariance postulate, which comes in the form of the
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TENSION-ENERGY THEOREM [46].

F TS + PC = wl,. (3.10)

Equations (3.3) and (3.7)-(3.10) then combine to give a form of the mechan-

ical dissipation imbalance that is consistent with the parameterization invariance

postulate:

d WdV + d wdA+ -d pv.vdV
dt t t dtJ5

P O Q(it) "it

Q(t) ap

+ JwV~dL+ J [(,§.Fn+V.4)n 2wVA
oQ(t) Q(t)

(3.11)

where

fic := ('TFC + T )n. (3.12)

3.5 Referential localizations and interface driving traction

Application of the surface transport theorem and linear momentum balance to

(3.11) yields the

REDUCED DISSIPATION IMBALANCE

d W - is.S.`.`,.+ I [(V, <<,-.F) + n] VV,, JV

•' Qe(t) (3.13)

- J - §.iPC+ ,o..
Q(t)

Localized away from the interface, this implies that

S. F - W > 0. (3.14)
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The local implication at the interface is

nI/ - [U,- g-• + ao,• > 0, A]1

where
f II -I S)) - IF] + (V. ((Fn)) + (V ).n (3.16)

is the interface driving traction. Equation (3.15) was first derived by KNOWLES

[15] within a setting devoid of surface fields. GURTIN and STRUTHERS [46] derived

(3.15) in its present form, but their work differs from the present development in

that, in [46], a more extensive set of postulates leads to a local balance principle

with the form of (3.16).

Equations (3.4), (3.10), (3.14) and (3.15) along with the angular momentum

localizations,
SF' = FS'

SF§-PT, 
(3.17)

comprise the local field equations for the mechanical theory of dissipative accre-

tion.
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4. Hyperelastic materials with interfaces

4.1 Material constitution

The mechanical theory summarized by (3.4), (3.10) and (3.14)-(3.17) is incom-

plete, since a means of characterizing the bulk and interface of a given material

has yet to be provided. This is done by establishing constitutive relationships

between the primitive fields and the process kinematics. Though the form of

such relations may be quite general, attention for the remainder of this work is

restricted to hyperelastic materials with interfaces. For such materials, there exist

energy response functions W and 6i, such that

W = 1(F)
(4.1)

S = aW(F)

and
w = tib(F,, n)

SP = aI,(Fc, n) (4.2)

ac = - 2 ti,(F¢, n),

with
W: Lin+(E 3, E') -5 IR

(4.3)
i(-, n) :Lin+(E3 ,E 3 ) +/f Vn E Unit(E 3 ),

and where 49, refers to the partial derivative of 0 with respect to its i' argument.

The symbol 496 refers to the derivative of a function 4? of a single argument. Here

and in the following development, P and I are treated as elements of Lin(1E 3 , n')

and Lin(n", E 3 ), respectively, defined by

Pb=b-(b-n)n, I=IpT, VbEIE 3 . (4.4)

The projection and inclusion maps P, I associated with the deformed surface

normal fi are treated analogously.

For such materials, (3.14) is strictly satisfied, implying that the bulk material

does not dissipate energy. The interface is still dissipative, however, with (3.15)
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reducing to

fV. > 0, (4.5)

where the driving traction f is given by (3.16). Accretion is therefore the only

way that hyperelastic materials can dissipate energy, as is clear from both (4.5)

and the fact that

kE + -P - J fVn dA (4.6)

Q(t)

for such materials. Here E, K, and P are as defined in the mechanical dissipation

imbalance.

The interface response functions of (4.1) and (4.2) can be expressed in a more

useful form using the following lemma from [46]:

LEMMA 1. Consider a function &i• defined by

il)(F, f, n) =t,(JFP + f 0 n, n)

Vn E Unit(E 3 ), Vf E E3 , VF E LinS(n', 
3). (4.7)

Then
Otý(F, f, n) =01,tb(FP + fQ n, n)I

(4.8)
82ti(F, f, n) =O1tv(FP + f® n, n)n.

Lemma 1 and (4.2)2 imply that

S = OD(F, f, n) (4.9)

and that

02w(F, f, n) = 0. (4.10)

The surface fields are therefore functions only of n and F, and the surface energy

of (4.2) could just as well have depended upon F+ or F-; preference has not been

given to the bulk on either side of the interface in describing the interfacial fields.

A final step in the material characterization is to express the referential accre-

tive stress C in terms of the surface energy response function ti. This is facilitated
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by introducing Dn67Z, the partial derivative of tb with respect to n following the

interface, identified as the unique element of n' such that

Dntb(F, n)- a = d ti, (F4 (k(O), n)., k(O))[=o

TO /s~ (4.11)

Vk :BRcIUnit(E 3), k(0) = n, k(0) = a,

where

Q: Unit(E 3 ) x Unit(E 3) - Orth+(E 3 , E 3 )

is the bilinear map defined by

Q(e, f)e = f Q(ef)g = g V{ef) E Unit(E 3 ) x Uriit 'E3 ),

with g. e = g f = 0. Then, as shown in [461,

D,,tv(F, f, n) = a 2z7(FP + f® n, n) + [89,t,(F, f, n)]Jf- FT &,tb(F, f, n). (4.12)

Since

(• = IP4ý + n (9 , n, (4.13)

(3.10) and (3.12) and the fact that PI = I1 combine to give

C = wI - IF T S + n 0 (ic - STFcn). (4.14)

Equations (4.2), (4.7), (4.9) and (4.12) then yield

C = zb(F, f, n)I - IF TO 1 ,b(F, f, n) - n 0 Dnfti(iF, f, n). (4.15)

Equations (4.9), (4.10) and (4.15) admit the following characterization of

hyperelastic materials with interfaces:

W = W(F)
(4.16)

S =0W(F),

and
w = t(F, n)

,= O,4(F, n) (4.17)

C ,b(F. n)I - IF T a, (F, n) - n 9 Dnz'(F, n).
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Note that the response of the system is independent of the scalar c introduced in

(3.3). The tangential component of C3 refers to PC3, and only the first two terms

in the above expression for C3 are represented in its tangential component since

Pn = 0. The last term in (4.17)3 is referred to as the normal component of the

accretive stress and is equivalent to n 0 Crn.

4..2 A kinetic relation for interfaces

The mechanical theory of hyperelastic materials summarized by (3.4), (3.17),

(4.5) and (4.16)-(4.17) is still incomplete. As shown by ERICKSEN [12] and

ABEYARATNE and KNOWLES f21-23, 26] for the case of no surface fields, there

are settings for which the location of the interface cannot be determined uniquely

for prescribed boundary data. Abeyaratne and Knowles suggest that this may be

interpreted as a constitutive deficiency. Motivated by the internal variable work

of RICE [43, 44] and the form of (4.5), they offer a simple remedy in the form of

a constitutive relation between the driving traction f and the accretive velocity

of the interface V,,:

r = fr (f)
(4.18)

Bf ,R, V7(f)fo0 VfE R.

Equation (4.18), is referred to as a kinetic relation with the inequality restricting

f' imposed by the dissipation imbalance (4.5). Supplementing the system postu-

lates and material constitution with such a relation has been shown, in certain

settings, to resolve the uniqueness problem [23, 26, 28-30]. Though developed

without considering surface fields, the rationale for adopting a kinetic relation is

still valid within settings that include interfacial structure. Such a constitutive

remedy is therefore adopted in the present work. It should be noted, however, that

GURTIN and STRUTHERS [46] have derived an equation with the form of (4.18),

from a more elaborate set of balance postulates.
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4.3 Mechanical equivalence

Consider two lattice elements A:1 and A:2 with respect to which a body is hyper-

elastic, that are related by linear transformation H, where k 2 = HoA: 1 . These

two reference configurations - re said to be mechanically equivalent if first,

p 1(x,t) = p 2(Hx,t) Vx E Ri(t)\Si(t), Vt E T (4.19)

and, second, they are characterized by the same response functions:

112 = 1' 1, I. '2 = t'l. (4.20)

By virtue of the construction of referential fields given in section 3.3, the

following formulae relate mass density and energy fields independent of any con-

stitutive considerations:

p 2(x,t) = Det(H)pi(Hx,t)

9' 2 (X, 0 = 1( W,(Hx, t) Vx E 1Z 1\S 1 (t), Vt E T (4.21)
Det(H)

and
w2(xt) IHrn(x t)Iw

WAX,0 't) w • 1(Hxt) Vx E Si(t), Vt E T. (4.22)

Equations (4.19)-(4.22) collectively imply that two reference configurations are

mechanically equivalent if and only if

Det(H) = 1

T471(F) = Wý(HF) VF E Lin+(1E3 ,E 3 ), V n E Unit(E 3).

i, 1(F. n) = IIHrn t FH, H

(4.23)

Define the material symmetry group g9, of a latticed body with respect to

lattice element kA to be the set of all lattice elements that are mechanically

equivalent to AC. If • = Unim(E 3, E3), the material is called a fluid. If

= Orth+(E 3 , E 3 ), the material is called a solid.
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The kinetic relation does not play a role in determining the mechanical equiv-

alence of two lattice elements. An appropriate change of configuration formula

can, however, be established. Let J, and j. be the bulk and surface determinants

associated with the linear transformation H. Then

- (4.24)
IN

and

f = Jif2 (4.25)

so that

f2J i(f VfE 1R. (4.26)

4.4 The role of accretive stres8

Recall that the local power expenditure associated with C is given by Cm- V.

For hyperelastic materials, then, (4.17)3 implies that

3m. V = {,•- [(Fr, )m], r}V,, -- ~[(Dnt)- m]V,. (4.27)

The first term represents power expended in extending the interface boundary via

tangential accretion. The second term represents a power expenditure accompa-

nying changes in interfacial orientation in association with normal accretion. The

accretive traction has a physically meaningful relation to the symmetry exhibited

by the interface and is embodied in the following

THEOREM ON FLUID-SURFACES.

(A) For fluids:

(i) dv = d, a constant;

(ii) C = 0; and

(iii) T= al.
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(B) For a hyperelastic bodies that do not support an accretive stress:

(i) ti, = 6, a constant; and

(ii) t= .41.

(C) For a hyperelastic material with constant interfacial energy per unit area:

(i) T1 ls; and

(ii) C1= 0.

(A) is due to GURTIN and STRUTHIERS [46], while (B) and (C) are new.

Proof.(B) For C( = 0, the tension-energy theorem of section 3.4 implies that

IFT S = w15. (4.28)

In terms of 'k, this is equivalent to

wl = jF T j t-T = jF t TF- T .

Therefore,

TC = Wp-ltT =ii-jS

j
Equation (ii) is therefore proved once (i) is established. It may be shown that

(4.28) is equivalent to

§ wi= -. (4.29)

But for hyperelastic materials, (4.17)2 gives

S= &�1t(F, n). (4.30)

Now let
1(F n) 7z= F n)
3

so that

,91 3(F, n) = jIF r(F, n) + j0 1 d((F, 11). (4.31)
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Here use has been mnade of the identity.

Ojj(F, n) = j"IF-r (4.32)

from 1460, with j((F, n)= j. Equations (4.29)-(4.31) then imply that

&,(F, n)IF" = j6(F, n)Wi' + .0 16(F. xn).

Therefore,

Od(/F, n) = 0. (4.33)

Cý = 0 also implies that &n = 0 which. by (4.17)3. gives that

0 = DnI,(IF,n) = [D,,3(F,n)](Fn) + (F,n) [D,&(,F.n)]. (4.34)

where
Det(F)J(F, ,1) :=

from (2.19)2. But following the definition of D.(-) given by (4.11),

d OFet [ =4 (k(0 ,,n)] }=

dO n)] -T ~?iJ 1,6=
d{ Det(F)

d3 1F-n(k(O),n) k(O) (4.35)

"-0.

Since

D~j((F, n) = Dj(FP + f o n,n)

by construction, (4.34) and (4.35) imply that

DnO(Y(F, n) = 0.

Use of (4.7), (4.8), and (4.12) with r in place of w then gives that er must be a

constant-valued function. Thus, CL, d, a constant. 0
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Proof (C) v = O is equivalent to w = J& so that S = ji-rT. Expression of

this result in terms of T yields 'i = &1,s and also implies that

IF TS = j&I = wI.

From (4.30) and the fact that w = jer,

DtnZ,(F, n) = 0.

Substitution of this result and (4.33) into (4.17)3 yields

Cý = wI- wI- n 0O = O. 0

Part (A) indicates that fluids cannot support an accretive stress, though

the converse of this does not hold in general. Parts (B) and (C), on the other

hand, do not depend upon the mechanical symmetry of the body. They imply

that, independent of the constitution of the bulk, an interface exhibits a fluid

nature-that is, surface energy and surface tension characterized by the same

scalar constant-if and only if C = 0. Thus, the accretive stress accounts for

special properties of interfaces exibiting a solid nature that are not associated

with their fluid-lke counterparts.
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5. Isotropic, hyperelastic materials with interfaces

A standard result in continuum mechanics asserts that hyperelastic materials are

isotropic with respect to a given reference configuration if and only if the bulk

energy can be represented by a function of the three fundamental scalar invariants

of the right Cauchy-Green tensor C := FTF or its square root U. These scalar

invariants are defined as

Ii(U) := Trace(U)

12 (U)= [(Trace(U))2 - Trace(U 2 )] VU E Sym+(E 3 ), (5.1)

13(U) := Det(U)

so that, in the absence of surface fields, a hyperelastic material is isotropic if and

only if it is characterized by

W = W(I,12,1 3)

S= ( ±1W + 1 82 WV)FU- 1 - (821V)F + (I 3a3 TV) rF (5.2)

T 13(,V + I11,19 ) V - +3(a2rV)V2 + A W1)i

where

Ik Ik(U) = I(V), U :=VFV , and V :=. (5.3)

Material isotropy also imposes restrictions on the interfacial response func-

tions, and the elucidation of these restrictions is central to this work. One such

restriction is on the accretive surface stress C and is a direct result of the following

PROPOSITION 1. Material isotropy implies that Dnt. = 0.

Proof. By (4.23), isotropy implies that

tb(F, n) = tb(FQ, Q'n)

VQ E Orth+(E 3 ,E 3), VF E Lin+(E 3 , E 3 ), Vn E Unit(E 3 ). (5.4)

Recalling (4.11), let

Q = ((k(3),n)
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for some

k: RSi•Unit(E 3 ), k(O) = n.

Then,

(T(k(3), n)n = k(,3) (5.5)

so that (5.4) implies that

Therefore,
d v F((k(0),n),k(0) d z--(F,n) = 0.

Thus, by the definition of Dniiý given by (4.11), Dntb = D =z = 0. 0

Prop. 1 implies that the accretive stress of isotropic, hyperelastic materials

does not have a normal component. This is clear from (4.17). In light of this

result and using (4.27), it may be concluded that any work performed by C to

reorient the interface must be due to material anisotropy since the last term in

(4.27) vanishes for isotropic bodies. LEO and SEKERKA [48] conclude that such a

work term should be present for anisotropic, hyperelastic materials, and the idea

is also in line with the earlier work of CAHN and HOFFMAN [49] and HOFFMAN

and CAHN [50], who adopted a capillary traction vector to account for anisotropic

effects in non-deformable media. In fact, consideration of such a work term can

be traced back to HERRING [41, 42].

Attention is next turned to the representation of interfacial fields in terms

of the ;calar invariants of the surface deformation gradient. An isotropic, scalar

function 0 is characterized by the property that

0((Q TUfQ, n) = 0(fJ, n)
(5.7)

Vf E Sym+(n'), V( E Orth+(n',n'), Vn E Unit(E 3 ).

Such functions admit an equivalent representation in terms of the two fun-

damental scalar invariants of their first argument-a property expressed in the

following
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PROPOSITION 2. If 0 is an isotropic, scalar function, then there exists a function,

p x Unit(E'3) -* JR such that

6(U, n) =O(i(U), I (U), n)

VU E Sym 4 (n'), Vn E Unit(E 3 ),

where

I:= ((1,2) I (Y, 2) E B?, (4(2 -_2)<0} (5.9)

and

i(U) := Trace(U), j(U) := Det(U). (5.10)

This proposition is proved with the help of the following two lemmas.

LEMMA 2. ((1,(2) E f?2 coincide, respectively, with i(.A) and j(A,) for some

A E Sym+(n") if and only if (1, (2) C I, with t as defined in (5.9).

Proof. Suppose AL E Sym+(n'). Then A has two, real, positive eigenvalues

Ssatisfying the characteristic equation

p() = -A 2 + i(A) -j(A) = 0.

Application of the quadratic formula then reveals that (i(,),j(k_)) E . Con-

versely, suppose ((1, (2) E I. Then

_,2 +± ý -( = 0

has two positive roots A,, A2 and (I = A1 + A2 and (2 = A1A2. Construct A E

Sym+(n") such that it has a component representation in its principal, rectilinear,

Cartesian coordinate basis of

C r i) n[0 A2.

Clearly, i*(.A) = (I and J(A-) = ('2- o
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LEMMA 3. Let A,B E Sym+(n'). Then i(AL) - i(), j(A) = j(f) if and only

if there exists a Q E Orth+(n-L, n-i). such that B = •TAQo.

Proof. Suppose j3 = TAkQ, Q E Orth+(n", n'). Then

= = (f3, =. ij )

Also,

j(B) = j(Q T AQ4)= j(QT )j(.)j(Q)= j(A).

Conversely, suppose i(A) = i(B) and j(A) = J(B). Then the eigenvalues of A

and Bý coincide since they are both given by the characteristic polynomial

,+ i- = 0.

Let {el,e 2 } and {e',e.} be the associated principal bases for A and B3, respec-

tively. Then there exists a Q E Orth+(n'1 ,n'), such that Qe, = eo, a = 1,2.

Thus,

Be, = = = TAec, = e = 45T iea = 1,2,

implying that B = QT A. 0

Suppose there exists a function €: I x Unit(E 3 ) --, R such that

,(ii, n) = 0(i(i),j(f),n) Vi) E Sym+(n-), Vn E Unit(E 3 ).

Then by Lemma 3,

=~J n) (0z( 3)( U ), n)

=¢((5QT (U4, n)VQ C Orth+(n',n').

Therefore, p is an isotropic, scalar function. Conversely, if € is an isotropic,

scalar function then by Lemmas 2 and 3 there exists a single-valued function,

I• x Unit(E 3 ) --+ B?, such that

6(fU, n) = 0(i(UJ),j(ii),n) VU0 E Sym+(n-), Vn E Unit(E 3 ).
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Prop. 2 is therefore established. It is will now be used to show that the

interfaces of isotropic, hyperelastic materials may be characterized by two scalar

invariants of the interface deformation as given by the

INTERFACE REPRESENTATION THEOREM.

Hyperelastic materials whose bulk is characterized by (5.2) are isotropic if and

only if the interfacial energy can be represented by a function 67, i -f?, such

that
z,(F,n) j(U))

VIF E Lin"S(n, E
3), Vn E Unit(E 3),

where

U /ý= = IF (5T2)

Proof That the representation given by (5.11) is possible for all isotropic

materials is proved with the help of two lemmas. The first establishes that the

interfacial energy of isotropic, hyperelastic materials may be characterized by an

isotropic, scalar function while the second lemma allows the orientation depen-

dence of the surface energy response function to be dropped.

LEMMA 4. For isotropic, hyperelastic materials the referential, interfacial energy

can be represented by an isotropic, scalar function

tb(., n) : Sym+(n"') ---- iR, V n E'Unit(!E3).

Proof Galilean objectivity implies that

&,(QFI, n) = tD(FI, n) VQ E Orth+(E]3 ,E 3 ), VF E Lin+(E 3 ,E 3 ),
(5.13)

Vn E Unit(E 3),

with I the inclusion map associated with n'.

By the polar decomposition theorem, there exist unique

UJ E Sym+(nj'), Q E Orth+(n',n'),
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such that F = 00 for every F E Lin+(n',fr'j.

Consider a particular linear transformation

Q = IQT P+ n®+i.

Note that this Q is in Orth+(E 3',!E) since

QQ T 
= (I(Q T P + n ® h)(!QP + ft C n)

= IQ5T PIQP + IQhPn 0 n + (n 9 h)IQP + (n 0 n)(h G n)

= IQJT  QP + n 0 n

=IQT Qp +n0n=IP+n n=l.

For this choice of Q,

QFI = QIF = QIQUf = (IQPrP + n n f)IQU4

= IQýT PIQU + (nO (9f)I(4U = IQ144* 1 U = IUJ.

Thus, Galilean objectivity implies that

ib(FI, n) = t6(IU, n) VF E Lin+(E 3 , E 3 ), Vn E Unit(E 3 ), (5.14)

with

VT--
and where EF and F are as defined as in section 2.5.

Now suppose that Q := IQP + n 0 n with Q5 E Orth+(n',n'). Then

QT Q = 1 and Q5 = PQI. From (5.13) and (5.14),

tý(FI, n) = ti(IU, n) t='(QIU, n). (5.15)

But for the Q chosen,

QIUJ = (IQP + n 0 n)IU = IQPIUj = IQUf. (5.16)

(5.15) and (5.16) together imply that

ti(ILQU,n)=tD(IU,n) VnEUnit(1E 3 ), VU E Sym+(n')
(5.17)

VQ E Orth+(n', n).
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Equation (5.17) holds for all hyperelastic bodies, but material isotropy im-

poses the additional restricition that

b(FQVQ T n) = t(F, n) VF E Lin+(E 3 , E), Vn E Unit(Ea),

VQ E Orth+(E ,E 3 ).

Choose Q := IQP + n ® n, as in the previous claim, and note that

Qrn = (IQTrP + n 0 n)n = n.

Thus, isotropy implies that tZ'(FQ, n) = zi(Fn) for such a Q which, by the

construction of tit in (4.7), gives that

,ti(FI, n) = zv(FQI, n). (5.19)

But

FQI = F(IQP + n 0 n)I = FIQPI = FIQ.

Equation (5.19) can thus be written as

zi(F,n) = tZ(FQ, n), (5.20)

and this holds for every F E LinNS(n',1E 3 ), n E Unit(V 3 ), Q E Orth+(n', n').

Since IJU E LinNS(n-,E 3 ), (5.20) implies that

,(IU,n) = ii,(IUQ, n) Vn E Unit(E 3 ), VU E Sym+(n'),

V Q E Orth+(n', n').

Equations (5.17) and (5.21) and the fact that the inclusion map I is deter-

mined solely by the unit normal n admits construction of an isotropic, scalar

function

tv(.,n) : Sym+(n') -- 1R, Vn E Unit(E 3 ),

such that tiIU, n) = tb(U, n). 0

LEMMA 5. &3tb(i,J,n1) = 0 V{i,j,n} 11 1E x Unit(E 3 ).
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Proof Let F" = FQ, n" = Q'n, and I" = QT IQ, with F E Lin+(E 3, E 3),

n E Unit(E 3 ), Q E Orth+(E3, E 3 ), and I the inclusion map for n'. Let

fJ-- = V(F*I*)T(FI*), UJ = v'/FI)T(FI).

Then UJ and fJ* have the same determinant since

j 2 (fU*) = j(P*(F*T F*I*) = j(Q T PFrFIQ) - j 2 (),

where both determinants must be positive. UJ and U* must also have the same

trace. This is true since

i(" 2) = (P*F*T F*I*, 1S) = (Q T PF T FIQ, 1i)

= (PFr FI, 1.) = 1(U 2 ),

and

i(j) = [i(Uj2 ) + 2j 2 (U)] 1/2

Material isotropy implies that ti3(F, n) = t7(F*, n*), and in terms of lb this

means that
6, (i(U,()n) = "b "* " n

But UJ and UJ* have the same trace and determinant so this equation is equivalent

to

6,(i,j,n) = t6(i,j,n*) V{i,j} E -t, Vn, n* E Unit(E 3 ). 0

Because of this result, the orientation dependence of 6, may be dropped and tb

considered a function t, : i ---+ R.

By (4.23), a sufficient condition to guarantee isotropy for materials whose

bulk is characterized by (5.2) is that

z,(FQ,Q'n)=t-v(F,n) VFELin+(E 3 ,E 3 ), Vn E Unit(E 3 ),

V Q E Orth+(E 3, E 3 ).

In terms of z, this is equivalent to

t i(i(P/),j(O)) = 6'(i(U*),j(UJ)) VF E Lin+(E 3 , E 3 ), Vn E Unit(E 3 ),

VQ E Orth+(E 3 , E 3 ),
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where U and U* are as defined in Lemma 5. But this equality is guaranteed since

U and U* have the same trace and determinant by Lemma 5. 0

The interface representation theorem is therefore established. In conjunction

with its counterpart from the elasticity theory of bulk materials, this theorem

implies that a necessary and sufficient condition for a hyperelastic material to be

isotropic is that (5.2), and (5.11) be satisfied. Note that the interfaces of such

bodies are completely characterized b. two scalar invariants associated with the

deformation of the interfaces without regard for interfacial orientation.

Equation (4.17)2 gives the referential deformational surface stress S as a

function of t2 so the above result can be used to express S in terms of tb. In the

following discussion, a pr , .iidicates the directional derivative of a function.

Also, it is convenient t, r- .,oduce the two-dimensional right Cauchy-Green tensor

CS := U2. The d;i:ectional derivative of tD with respect to its first argument is

then given by

= n)B = ['( (5.22)

V1B E Lin"S(n',E 3 ),

where
p(C's) := C,1 2 VCs E Sym+(n')

(5.23)
r(F:) :=F T F VF E Lin'S(n',E3).

A standard mathematical result (CIARLET [511 10-11) is that

i'(U)15 = i(1) VU,1 E Sym+(n"•)
(5.24)

j'(U)D = j(U)I(U-'ID) VU,1D E Sym+(n).(

Also,
F'(F)IB = I T F + F T D VF,A 3 ELinNS(n", E 3 ),

-1

- -(Cf) 1 C; 1 2D Cf , ) E Sym+(n'). (5.25)
2

(5.25) implies that

,I'(cs)[r'(1F)1B] = 1-I(DTF + FT B), (5.26)
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and this result can be used with (5.24), to obtain

C)r'(Fr)f = i[z -I(BTIF + F T 3)]2 ~(5.2 7)
- (FQ-', ).

Likewise, (5.24)2 and (5.26) imply that

j'(U)v'(C,)r'(F)jB = 1 (c)(f- , B F T + F( .2S(5.2s)
= j(U)(f-, ,B).

(5.27) and (5.28) can then be applied to (5.22) to obtain

IS, I &=ci,( ij )(F1- ) + j 2 w(i,j)j(U)(IEU 2 ) (5.29)

VI De Lin'S(n', E3).

Therefore,

aO '(i,j)FUj-' + 02 t7w(i,j)itU) U-2 (5.30)

and

.1T=-7a 1ti,(ij')PFU'F T + a 26(i,j_)PFU-2FT (5.31)

These representations can be simplified by using the left polar decomposition of

the surface deformation gradient. Given F = QU = Vr, then V = FU-,F'.

Therefore,

PF1U-'F T = V. (5.32)

A simplification is also possible by noting that

PFU- 2F T = 1•. (5.33)

Thus, the deformational stresses of isotropic, hyperelastic interfaces can be rep-

resented as

+= I{8i(i,j)U' +j(U)82tb(i,j)F' T- (5.34)

and

.1(9i th (crivt + 02 th (i, ob)a1n (5.35)

A representation for the accretive stress is then obtained using (4.17)3.
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6. Summary

A model for martensitic phase transitions has been presented that is intended to

capture localized interfacial effects. A set of physically reasonable postulates lead

to field equations and jump conditions. The notion of a hyperelastic material

"was extended to include bodies that support structured interfaces, and an inter-

face representation theorem was derived for isotropic, hyperelastic bodies. The

following is a summary of the interfacial characterization of these materials:

w = tZ(i,j)

g= i{(0,ti,)FU-' + (jOti')F-T }

"T" =_ -(0p,)V + (0 2ti')15 (6.1)

C I{-(0,1 7b)U + (tb -ja 2tii) 1},

where

i := i(U) = i(V), 5 := j(U) = 5(V)

Thus, isotropic, hyp -relastic interfaces are completely characterized once the de-

pendence of the surface energy on the invariants of the interfacial deformation

is established. Moreover, a necessary and sufficient condition for a hyperelastic

material to be isotropic is that (5.2), and (6.1), be satisfied.

An application of this theory is examined in LusK [47], where three different

interfacial constitutions are examined in a problem concerning nucleation and

growth.
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Figure 1. A two-phase deformation Y and its restriction y to

the interface S.
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Figure 2. Subregions P and Q(t) of R and S(t), respectively, and

their images P(t) and Q(t).
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